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CHOOSING THE CORRECT ANALYSIS

To analyze statistical data correctly, you must choose the correct statistical
test. The test you should use when you have interval data is not the same
test you should use when you have nominal data. The test you should use
when you are comparing each participant with himself or herself is not the
same test you should use when you are comparing one group to another
group. The test that would work when you only had two conditions may
not work when you are comparing more than two conditions. In other
words, there are at least three factors you should take into consideration
when choosing a statistical test: (a) the scale of measurement—the type of
numbers—that your measure provides (to learn more about scales of mea-
surement, see the table below or see Chapter 6); (b) the type of comparison
you are making (one group of participants compared to one or more other
groups |between-subjects] or each participant compared to himself or herself
[within-subjects]); and (c) the number of conditions you have. In the next
three sections, we will show you how to take each of these three factors into
account so that you can choose the right analysis for your study.

Scales of Measurement

Often, the type of statistical test depends on what type of data you have. For
example, you will do one test if your scores do not represent amounts of a
quality but instead represent what kind or fype of response a participant
made (e.g., responses are categorized as helped or did not help, cheated or
did not cheat, or preferred one product over another product), and you will
do a different test if your scores represent amounts of a quality (e.g., how
loud a person yelled, how much they agreed with a statement). To get more
specific information about how the type of data you have affects how you
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should summarize and analyze those data, see the following table (if you
want more information on scale of measurement, see Chapter 6).

Scale of Measure of Typical statistical
measurement Example Average correlation  analysis
Nominal When numbers represent Mode (most common Phi Chi-square
categories that are not or- score) or simply describe coefficient
dered, such as 1 = yelled, the percentage of partici-
2 = frowned, 3 = cried pants in each category
Ordinal Ranks (e.g., 1st, 2nd, 3rd) Median (middle score) Spearman’s Mann-Whitney (if
rho testing two groups),
Kruskal-Wallis(if test-
ing more than two
groups), Friedman test
(if using within-
subjects design)
Interval Rating scales Mean Pearson r ¢ test, ANOVA
Ratio Height, magnitude estimation Mean Pearson r ¢ test, ANOVA

Type of data

Within-Subjects Versus Between-Subjects Designs

Another factor that determines which statistics you should use is whether you
are using a within-subjects design (comparing each participant with himself or
herself) or a between-subjects design (comparing one group of participants
with a different group of participants). For example, if you were using a
two-condition within-subjects design, rather than using a between-subjects
ANOVA or an independent groups ¢ test, you should use either a dependent
groups ¢ test or a within-subjects ANOVA.

Number of Conditions

Finally, you must also consider the number of conditions you are comparing.
For example, if you have interval data and are comparing only two condi-
tions, you can use a t test. If, however, you are comparing more than two
conditions, you must use ANOVA instead. To get more specific information
about how the number of conditions should affect how you analyze your
data, consult the following table.

Number of conditions

Two More than two

Nominal, between-subjects
Nominal, within-subjects or matched pairs

Ordinal, between-subjects

Chi-square Chi-square

McNemar test Cochran Q test

Mann-Whitney test Kruskal-Wallis test
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Number of conditions

Two

More than two

Ordinal, within-subjects or matched pairs

Interval/ratio, between-subjects

Wilcoxon matched-pairs

independent groups ¢ test or

Friedman test

between-subjects

3

between-subjects ANOVA ANOVA
Interval/ratio, within-subjects or matched dependent ¢ test or within- within-subjects
subjects ANOVA ANOVA

Performing the Correct Analysis: An Overview of the Rest
of This Appendix

If you refer to the information we just discussed or follow our flowchart (see
Figure 1), you will choose the right statistical test. But should you conduct a
statistical significance test on your data? Not everyone agrees that you should
(to understand both sides of this issue, read Box 1).

Despite the controversy surrounding significance testing, most experts
agree that statistical significance provides good evidence that a finding is reli-
able. Largely because statistically significant tests are helpful in preventing us
from mistaking a coincidence for a genuine relationship, almost all articles
you read will report the result of a significance test. Therefore, the rest of
this appendix will be devoted to discussing the logic and computations behind
the most commonly used statistical tests.

We will begin by discussing the independent groups ¢ test. Learning about
the # test will not only teach you about one of the most commonly used statis-
tical techniques, but it will also give you the foundation for understanding
other statistical techniques. We will then discuss the most common technique
for analyzing the results of an experiment that has more than two groups:
ANOVA. We will finish our discussion of techniques that students typically
use to analyze data from experiments with a description of the dependent
t test.

After talking about techniques commonly used to analyze the results of
experiments, we will discuss techniques commonly used to analyze data from
surveys and other correlational research. We will begin by talking about how
to compute the Pearson 7. Then, we will show you how to calculate and inter-
pret the coefficient of determination. Next, we will show you how to find out
if a Pearson 7 in your sample indicates that the two variables are really related
in the population. Following this discussion of techniques that are commonly
used when you have interval data, we show you how to do comparable analyses
when you have nominal data. Finally, we will discuss more sophisticated
ways of analyzing correlational data, including multiple regression, media-
tional analyses, and factor analysis.
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JO) @l Ban Statistical Significance Testing?

Although many have criticized the use of statistical
significance tests, psychologists—even most of the
critics of such tests—still use them (Greenwald,
Gonzalez, Harris, & Guthrie, 1996). To understand

attacks on statistical significance fall into three
general categories: (a) the attack reflects a problem
not with statistical significance tests themselves but
with how people use or think about statistical

why, we will consider the major objections to
statistical significance and how defenders of the
statistical significance tests would respond to those

significance tests, (b) the attack would still be made
if people used alternatives to significance tests, or
(c) the attack is misguided.

objections. As you can see, the responses to the

Objection to statistical
significance testing

Reply to objection

Defender’s gener-
al comment about
the attack

The significance test
doesn't tell you anything

because the null is always

false. Everything is con-
nected to everything else.
That is, two variables will
always be related.

The p < .05 level is arbitrary.
Why would a p of .051 fail
to be significant, whereas a

p of .049 would be
significant?

The attack is
misguided.

The evidence for the view that the null is always
false is less than overwhelming. Scientists who
have really wanted to believe that a treatment had
an effect have used strong treatments and large
sample sizes, and still failed to find significant
effects. Indeed, most psychologists know that

their work will not be published unless their

results are statistically significant and yet they

often fail to obtain significant effects for the variables
of interest.

As Hagan (1998) points out, if opponents mean
that every treatment has some effect on the mea-
sured dependent variable, then that means that (a)
there are no Type 1 errors, (b) all null results are Type
2 errors, and(¢) quack therapies really work.

Even if the null was always false, we would still
want to know the direction of the effect (does it
help or hurt?). Significance testing is good at
detecting the direction of an effect (Harris, 1997).

Before significance testing, people could just
decide that their results “felt real and reliable.”
Currently, with the .05 criterion, they have to
meet some objective standard.

In the situation described, any reasonable
investigator would follow up on any interesting
hypothesis that had a p value of .051. Usually,
the investigator would replicate the study using
more participants so that the study would have
more power.

Generally, if we are going to err, we should error
on the side of caution. By sticking to the p < .05
level, we are unlikely to report that a treatment
has one kind of effect when the treatment actually
has the opposite effect.

The problem is not
as serious as
critics allege—and
alternative meth-
ods have similar
problems.

(Continued)


MPS
Inserted Text
 


6

APPENDIX e Online Introduction to Statistics

BOX 1 Continued

Objection to statistical
significance testing

Defender’s gener-
al comment about

Reply to objection the attack

The logic behind statistical
significance is not—

according to the rules of for-

mal deductive logic—valid
(Cohen, 1994). Statistical
significance does not tell

us how likely it is that the null

is false. Instead, it gives us
the probability of getting a

set of results given that the

null is true (Cohen, 1994).

Statistical significance is
misunderstood.

1.

Many think null results
mean accepting the null
(Shrout, 1997).

4.

N

As Greenwald, Gonzalez, Harris, and Guthrie

(1996) point out, people need “yes versus no”
answers to many questions, such as “ls this
treatment superior to a placebo?” (p. 178). When
we must decide whether to act or not to act, we
must use an arbitrary cutoff. For example, how
sure do you have to be that going to a doctor would
be the best thing to do before you actually go? If
we used the same tactics as those who argue that
the .05 significance level is arbitrary, we could make
any cutoff seem arbitrary. For example, if you said
“60%,"” we could reply, “so you would not go

if you were 59.99% sure?” Note, however, that
you are not being irrational: You have to have some
cutoff or you would never act.

An alternative approach, using confidence intervals
instead of significance tests, has the same problem.
(To learn more about confidence intervals, see

Box 10.2.)

The fact that significance testing is not valid The problem is not
according to the rules of formal logic does not as serious as
mean it is illogical (Hagan, 1998). Most of what critics allege.
physical scientists do is not valid in terms of

formal, deductive logic (T. A. Lavin, personal

communication, July 18, 2002).

Philosophers would say that the arguments behind

significance testing are logically valid abductive

arguments (J. Phillips, personal commmunication,

September 4, 2005).

Hagan (1998) argues that DNA testing uses a

similar logic.

With simulated data, Type 1 error rates are what

significance tests would predict (Estes, 1997).

In practice, significance tests (a) are very good at

telling us the direction of an effect and (b) provide

information about the probability that a replication

of the study would obtain a significant effect

(Greenwald et al., 1996).

Would physics researchers change their methodol- The problem is
ogy because the average person did not understand due to people
their methods? If there is a concern about significant misunderstanding
results being misunderstood, there are alternatives to the term “statisti-
eliminating significance testing. For example, the cal significance,”
public or the media could be educated about what
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BOX 1 Continued

Objection to statistical
significance testing

Reply to objection

Defender’s gener-
al comment about
the attack

2.

Many think statistical
significance means the

same as important
(Shrout, 1997).

Statistical significance is

not a measure of effect size.
It is a measure of sample
size and effect size. There-
fore, we should measure

effect size instead.

Significant effects may
be small.

“statistical significance” means or the term could be
changed so that people did not confuse its meaning
with the meaning of the word “significant.” Similarly,
Scarr (1997) suggests that the term “reliable” replace
“significance.”

1. "Effect size” does not give you a pure measure
of a variable's effect because”effect size”
depends on (a) the power of the original manipu-
lation, (b) how homogenous the sample is, and (c)
the reliability and sensitivity of the dependent
measure. Thus, with a different treatment
manipulation, measure, or sample, you will obtain
a different effect size. In addition, an effect that
would be large in a well-controlled laboratory
study might be tiny in a real-world setting. Even
when we (a) study variables in real world settings
and (b) use measures that give us estimates of
effect size, we still are unable to establish the
relative strength of variables (e.g., the nature/
nurture debate on 1Q).

not with statistical
significance itself.

The problem is not
as serious as
critics claim.

Estimates of effect size can be obtained from sig-
nificance tests (see Box 10-2).

As Prentice and Miller (1992) point out, the fact that
a weak manipulation of a variable has any effect at all
can be convincing evidence for the importance of
that variable.

A large effect size on a trivial variable (ratings on a
scale) may be unimportant, whereas a small effect
size on an important variable (health) may be
important.

A large effect that does not persist may be less
important than a small, lasting effect that accumu-
lates over time.

1. Small effects may be very important (a) when
evaluating the relative validity of two theories,
(b) when looking at an important variable (e.g.,
the effect size for aspirin on preventing heart
attacks is tiny, but has enormous practical impli-
cations), and (c) when looking at variables that
have effects that accumulate over time (e.g., if
we produce even a tiny effect for a single com-
mercial we present in the lab, the implications
may be enormous because the person will

The problem is
with people mis-
understanding the
meaning of statis-
tical significance
rather than with
statistical signifi-
cance tests



8 APPENDIX e Online Introduction to Statistics

Objection to statistical
significance testing

BOX 1 Continued

Reply to objection

Defender’s gener-
al comment about
the attack

Significance testing made

our science unreliable, unlike

physical sciences.

Significance tests are
misused.

The p value doesn't tell
you the probability that
you would get similar re-
sults if you repeated the
study. For example, if
your results are signifi-
cant at the p = .05 level,
there is only about a 50%
chance that if you re-
peated the study, you
would again get signifi-
cant results in the pre-
dicted direction.
Therefore, at the very
least, researchers should
use prep rather than p. (For
more information on prep,
see the text's website).

probably see more than a million ads in the
course of a lifetime).

2. Any informed person could determine whether the
effect was small.

1. Our findings are as replicable as those in physics
(Hedges, 1987).

2. Health research’s abandonment of statistical signifi-
cance seems to have made their research more
conflicting rather than less.

3. Significance reduces our risk of mistaking a chance
difference for a genuine effect. It also prevents us
from believing that our data support whatever pat-
tern we desire. Thus, significance testing has made
our findings more—not less—reliable (Scarr, 1997).

4. Impressions that studies conflict often reflect a mis-

understanding of significance tests. If one study is
significant and the other is not, then one study

refutes the null and the other fails to refute the null.
The two studies are not in conflict because the sec-

ond study does not support the null.

5. Other social scientists tend to want to model our
approach because it has been so successful in pro-
ducing reliable, objective findings.

Everything can and will be misused (Abelson, 1997).

There is a relationship between the p value and the
chance of obtaining the same results in an exact
replication (Greenwald et al., 1996). pep is based on
p and is controversial.

The attack is
misguided.

The attack is
misguided.

This is a problem
with people mis-
understanding sta-
tistical significance
rather than with
significance
testing.

(Continued)
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BOX 1 Continued

Objection to statistical
significance testing

Reply to objection

Defender’s gener-
al comment about
the attack

Significance tests don't tell
us anything because ob-
served differences that are
not significant would have
been significant with a larger
sample size.

People doing statistical sig-
nificance tests ignore power
and thus make many Type 2
errors (Shrout, 1997).

A confidence interval (Cl), in
which the researcher would
be 95% confident that the

effect was more than ___ but

less than ___, would be more
informative than significance
tests.

ANALYZING DATA FROM THE SIMPLE, TWO-GROUP
EXPERIMENT: THE INDEPENDENT GROUPS ¢t TEST

As Hagen (1997) points out, with larger sample sizes,
the observed differences will tend to get smaller. That is,
with a small sample, the standard error of the difference
is large. However, with many participants, the standard
error of the difference shrinks, and large differences will
be less likely to occur by chance.

Researchers should use studies that have more power.
If they fail to do so, the problem is not with statistical
significance testing, but with the researcher.

1. Cl has many of the same problems as significance
testing (Abelson, 1997).

2. An informed reader could construct confidence
intervals from the reports of a significance test.

The attack is
misguided.

This is a problem
with researchers
rather than with
significance
testing.

Cls should supple-
ment, rather than
replace, statistical
significance
testing.

To use the independent groups ¢ test, you must meet the following three
criteria:

1. You must have two groups.
2. Your observations must be independent.
3. You must be able to assume that your data are either interval or ratio.

In addition, each of your groups should have approximately the same vari-
ance, and your scores should be normally distributed.

As long as your data meet these assumptions, then you can use the 7 test
to analyze your data. Thus, the ¢ test can be used to look at differences on
any measure, such as between men and women, computer users vs. nonusers,
or any two independent groups. However, the most common use of the ¢ test
is to analyze the results of a simple (two-group, between-subjects) experiment.

To understand why you can use the ¢ test to analyze the results of a sim-
ple experiment, remember why you did the simple experiment. You did it to
find out whether the treatment would have an effect on a unique population—
all the individuals who participated in your experiment. More specifically, you
wanted to know the answer to the hypothetical question, “If T had put all my
participants in the experimental condition, would they have scored differently
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than if I had put all of them in the control condition?” To answer this question,
you need to know the averages of two populations:

Average of Population 1: what the average score on the dependent mea-
sure would have been if all your participants had been in the control
group

Average of Population 2: what the average score on the dependent mea-
sure would have been if all your participants had been in the experimen-
tal group

Unfortunately, you cannot measure both of these populations. If you put
all your participants in the control condition, you won’t know how they
would have scored in the experimental condition. If, on the other hand, you
put all your participants in the experimental condition, you won’t know how
they would have scored in the control condition.

Estimating What You Want to Know

Because you cannot directly get the population averages you want, you do the
next best thing—you estimate them. You can estimate them because—thanks
to independent random assignment—you started your experiment by dividing
all your participants (your population of participants) into two random sam-
ples: one of these random samples from your original population of partici-
pants was the experimental group; the other random sample was the control
group.

The average score of the random sample of your participants who
received the treatment (the experimental group) is an estimate of what the
average score would have been if all your participants received the treatment.
The average score of the random sample of participants who received no
treatment (the control group) is an estimate of what the average score would
have been if all of your participants had been in the control condition.

Calculating Sample Means

Even though only half your participants were in the experimental group, you
can assume that the experimental group is a fair sample of your entire popu-
lation of participants. Thus, the experimental group’s average score should be
a reasonably good estimate of what the average score would have been if all
your participants had been in the experimental group. Similarly, you can
assume that the control group’s average score is a fairly good estimate of
what the average score would have been if all your participants had been in
the control group. Therefore, the first step in analyzing your data will be to
calculate the average score for each group. Usually, the average you will cal-
culate is the mean: the result of adding up all the scores and then dividing by
the number of scores (e.g., the mean of 0, 2, and 4 would be [0 + 2 + 4]/3 =
6/3 =2).

Comparing Sample Means

Once you have your two sample means, you can compare them. We can com-
pare them because we know that, before the treatment was administered,
both groups represented a random sample of the population consisting of
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every participant who was in the study. Thus, if the treatment had no effect,
at the end of the experiment, the control and experimental groups would
both still be random samples from that population.

As you know, two random samples from the same population will be
similar to each other. For example, two random samples of the entire popula-
tion of New York City should be similar to each other, two random samples
from the entire population of students at your school should be similar to
each other, and two random samples from the entire group of participants
who were in your study should be similar to each other. Thus, if the treat-
ment has no effect, at the end of the experiment, the experimental and control
groups should be similar to each other.

Because random samples of the same population should be similar, you
might think all we need to do is subtract the control group mean from the
experimental group mean to find the effect. But such is not the case: Even if
the treatment has no effect, the means for the control group and experimental
group will rarely be identical. To illustrate, suppose that Dr. N. Ept made a
serious mistake while trying to do a double-blind study. Specifically, although
he succeeded in not letting his assistants know whether the participants were
getting the real treatment or a placebo, he messed up and had all the partici-
pants get the placebo. In other words, both groups ended up being random
samples of the same population—participants who did not get the treatment.
Even in such a case, the average scores (the means) of the two groups may be
very different.

Dr. N. Ept’s study illustrates an important point: Even when groups are
random samples of the same population, they may still differ because of ran-
dom sampling error. You are aware of random sampling error from reading
about public opinion polls that admit to a certain degree of sampling error
or from reading about two polls of the same population that produced
slightly different results.

Because of random sampling error, some random samples will not be rep-
resentative of their parent population. Because of the possibility that a sample
may be strongly affected by random sampling error, your sample means may
differ even if the real, parent population means do not.

Inferential Statistics: Judging the Accuracy of Your Estimates

We have told you that random error can throw off your estimates of popula-
tion means. Because of random error, the treatment group mean is an imper-
fect estimate of what would have happened if all the participants had received
the treatment and the control group mean is an imperfect estimate of what
would have happened if none of the participants had received the treatment.
Thus, the difference between your experimental group mean and control
group mean could be due to random error. Consequently, finding a difference
between the treatment group mean and the no-treatment group mean doesn’t
prove that you have a treatment effect.

If the difference between your group means could be due to random
error, how can you determine whether a difference between the sample
means is due to the treatment? The key is to know how much of a difference
random error could make. If the actual difference between your group means
was much bigger than the difference that chance could make, you could con-
clude that the treatment had an effect.
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Estimating the Accuracy of Individual Sample Means

How can you determine whether the difference between your sample means is
too large to be due to random error? Knowing the accuracy of each of your
individual sample means should help. For example, suppose you knew the
control group mean was within one point of its true population mean. Fur-
thermore, suppose you knew that the experimental group mean was also
within one point of its real population mean. In other words, you knew that
(a) the estimate for what the mean would be if everybody had been in the
control group was not off by more than one point, and that (b) the estimate
for what the mean would be if everyone had been in the experimental group
was also not off by more than one point.

If you knew all that, and if your control group mean differed from your
experimental group mean by 20 points, then you would know that your two
sample means represent different population means. In other words, you
could assume that if all your participants had been given the treatment, they
would have scored differently than if they had all been deprived of the
treatment.

If, on the other hand, the two group means had differed by less than one
point but each of your estimates could be off by a point, a one-point differ-
ence between the groups could easily be due to random error. In that case,
you would not be able to conclude that the treatment had an effect.

Consider Population Variability: The Value of the Standard Deviation. You have
seen that a key to determining whether your treatment had an effect is to
determine how well your two sample means reflect their population means.
But how can you do that?

One factor that affects how well a mean based on a random sample of
the population reflects the population mean is the amount of variability in
the population. If there is no variability in the population, all scores in the
population will be the same as the mean. Consequently, there would be no
sampling error. For example, if everyone in the population scored a 3, the
population mean would be 5, and the mean of every random sample would
also be 5. Thus, because all Roman Catholic cardinals hold very similar posi-
tions on the morality of abortion, almost any sample of Roman Catholic car-
dinals you took would accurately reflect the views of Roman Catholic
cardinals on that issue.

If, on the other hand, scores in a population vary considerably (fer-exam-
plg, ranging anywhere from 0 to 1,000), then independent random samples
from that population could be extremely inaccurate. In that case, you might
get sample means ranging from 0 to 1,000. Thus, two sample means from
such a heterogeneous population could be very different.

To recap, you have seen that the variability of scores in a population
affects how accurately individual samples will reflect that population. Because
the extent of the variability of scores in the population influences the extent
to which we have random sampling error, we need an index of the variability
of scores within a population.

The ideal index of the population’s variability is the population’s stan-
dard deviation: a measure of the extent to which individual scores deviate
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:J1)@4 How to Compute a Standard Deviation

Assume we have, as a result of random sampling, STEP 4: Add (sum) the squared differences
obtained four scores (108, 104, 104, 104) from a obtained in step 3 to get sum of squared differ-
population. We could estimate the population’s ences, otherwise known as sum of squares.
standard deviation by going through the following Sum of squares is often abbreviated as (SS).
steps. Sum of squares (SS) = 12.

STEP 1: STEP 2:

STEP 5: Get variance by dividing SS (which
STEP 3: was 12) by one less than the number of

Calculate the Subtract scores  Square

scores (4—1 = 3). This division yields a variance
of 4 (because 12/3 = 4).

mean (M). from mean differences. o ;
(105) to get STEP 6: Get the standard deviation by taking the
differences. square root of variance. Because the variance is 4,
the standard deviation is 2 (because the square
108 — 105 = +3 (+3)2 = +9 root of 4 is 2).
104 — 105 = -1 -1)? = +1 For those preferring formulas,
104 — 105 = -1 =17 = +1 S=\VEX—-MPN-1
104 — 105 = -1 1) = +]

420 = Total
Mean = 420/4 = 105

where X stands for the individual scores, M is the
SS — 12 sample mean, S is the estimate of the population’s
standard deviation, and # is the number of scores
(so, A1 is one less than the number of scores).

from the population mean. Unfortunately, to get that index, you have to
know the population mean (for the control condition, the average of the
scores if all the participants had been in the control condition; for the experi-
mental condition, the average of the scores if all the participants had been in
the experimental condition). Obviously, you don’t know the population mean
for either the control or experimental condition—that’s what you are trying
to find out!

Although you cannot calculate the population standard deviation, you
can estimate it by looking at the variability of scores within your samples. In
fact, by following the steps in Box 2, you can estimate what the standard
deviation would have been if everyone had been in the control group
(by looking at variability within the control group) and what the standard
deviation would have been if all your participants had been in the experimen-
tal group (by looking at variability within the experimental group).

One reason the standard deviation is a particularly valuable index of var-
iability is that many populations can be completely described simply by
knowing the standard deviation and the mean. You probably already know
that the mean is valuable for describing many populations. You know that
for many populations, most scores will be near the mean and that as many
scores will be above the mean as will be below the mean.

What you may not know is that for many populations, you can specify
precisely what percentage of scores will be within a certain number of
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standard deviations of the mean. For instance, you can say that 68% of the
scores will be within one standard deviation of the mean, 95% will be within
two standard deviations of the mean, and 99% of the scores will be within
three standard deviations of the mean. If a population’s scores are spread out
(distributed) in this manner, the population is said to be normally distributed.

As the term “normally distributed” suggests, many populations are nor-
mally distributed—from test scores to the heights of American women.
Because normally distributed populations are common, graphing the distribu-
tion of scores in a population will often produce a normal curve: a bell-
shaped, symmetrical curve that has its center at the mean (see Figure 2).

It’s convenient to summarize an entire distribution of scores with just two
numbers: the mean, which gives you the center of a normal distribution; and
the standard deviation, which gives you an index of the width of the distribu-
tion. It’s comforting to know that 68% of the scores will be within one stan-
dard deviation of the mean, that 95% of the scores will be within two
standard deviations of the mean, and that virtually all the scores will be
within three standard deviations of the mean.

But the standard deviation has more uses than merely describing a popu-
lation. You could use the standard deviation to make inferences about the
population mean. For example, suppose you don’t know the population’s
mean, but you know that the distribution is normally distributed and that its
standard deviation is 3. Then, you don’t need much data to make certain
inferences about that population. Specifically, you know that if you randomly
selected a single score from that population, there would be a 68% chance
that the population mean would be within 3 points (one standard deviation)
of that score and a 95% chance that the population mean would be within 6
points (two standard deviations) of that score.

99%
A
4 N
95%
A

68%
A

4 34% 34% k

T 2%’I T T T I2% T
Mean Mean Mean Mean Mean Mean
-3 -2 —1 +1 +2 +3
standard standard  standard standard  standard standard
units units units units units units

FIGURE 2 The Normal Curve
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Consider Sample Size: The Role of the Standard Error. Of course, to estimate
your control group’s population mean, you would not use just one score.
Instead, you would use the mean you calculated by averaging all the scores
from your control group. Intuitively, you realize that using a sample mean
based on several scores will give you a better estimate of the population
mean than using a single score.

You also intuitively realize that your sample mean will be a better esti-
mate of the population mean if your sample mean is based on many scores
than if it is based on only a few scores. In other words, the bigger your inde-
pendent random sample, the better your random sample will tend to reflect
the population—and the closer its mean should be to the population mean.

As you have seen, the accuracy of your sample mean depends on (a) how
much the scores vary and (b) how many scores you use to calculate that
mean. Thus, a good index of the degree to which a sample mean may differ
from its population mean must include both factors that influence the accu-
racy of a sample mean, namely:

1. population variability (the less population variability, the more accurate
the sample mean will tend to be)

2. sample size (the larger the sample, the more accurate the sample mean
will tend to be)

Although the standard deviation tells you how much the scores vary, it
does not take into account how many scores the sample mean is based on.
The standard deviation will be the same whether the sample mean is based
on 2 scores or 2,000. Because the standard deviation does not take into
account sample size, the standard deviation is not a good index of your sam-
ple mean’s accuracy. However, both of these (population variability and sam-
ple size) are included in the formula for the standard error of the estimate of
the mean (also called the standard error): an index of the degree to which
random error may cause a sample mean to be an inaccurate estimate of its
population mean.

The standard error (of the estimate of the population mean) equals the
standard deviation (a measure of population variability) divided by the square
root of the number of participants (an index of sample size). Thus, if the stan-
dard deviation were 40 and you had 4 people in your sample, the standard
error would be

40 40
—= = -20

NZE)

Note that dividing by the square root of the sample size means that the bigger
the sample size, the smaller the standard error. Thus, the formula reflects the
fact that you have less random sampling error with larger samples. Conse-
quently, in the example above, if you had used 100 participants instead of 4,
your standard error would have shrunk from 20(40/+v/4) to 4(40/v/100).
What does the standard error tell you? Clearly, the larger the standard
error, the more likely a sample mean will misrepresent the population mean.
But does this random error contaminate all samples equally or does it heavily
infest some samples while leaving others untouched? Ideally, you would like
to know precisely how random error is distributed across samples. You want
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to know what percentage of samples will be substantially tainted by random
error so that you know what chance your sample mean has of being
accurate.

Using the Standard Error. Fortunately, you can know how sample means are
distributed. By drawing numerous independent random samples from a nor-
mally distributed population and plotting the means of each sample, statisti-
cians have shown that the distribution of sample means is normally
distributed. Specifically, most (68%) of the sample means will be within one
standard error of the population mean, 95% will be within two standard
errors of the population mean, and 99% will be within three standard errors
of the population mean. Therefore, if your standard error is 1.0, you know
that there’s a 68% chance that the true population mean is within 1.0 points
of your sample mean, a 95% chance that the population mean is within 2.0
points of your sample mean, and a 99% chance that the population mean is
within 3.0 points of your sample mean.

When you can assume that the population is normally distributed, you
can estimate how close your sample mean is to the true population mean.
You do this by taking advantage of the fact that sample means from normally
distributed populations will follow a very well-defined distribution: the nor-
mal distribution. But what if the underlying population isn’t normally
distributed?

Even then, as the central limit theorem states, the distribution of sample
means will be normally distributed—if your samples are large enough (30 or
more participants). To understand why the central limit theorem works, real-
ize that if you take numerous large random samples from the same popula-
tion, your sample means will differ from one another for only one reason—
random error. Because random error is normally distributed, your distribu-
tion of sample means will be normally distributed—regardless of the shape
of the underlying population. Consequently, if you take a large random sam-
ple from any population, you can use the normal curve to estimate how
closely your sample mean reflects the population mean.

Estimating Accuracy of Your Estimate of the Difference Between
Population Means

Because you know that sample means are normally distributed, you can
determine how likely it is that a sample mean is within a certain distance of
its population mean. But in the simple experiment, you are not trying to find
a certain population mean. Instead, you are trying to find out whether two
population means differ. As we mentioned earlier, you want to know whether
there was a difference between two hypothetical population means: (a) what
the mean score would have been if all your participants had been in the con-
trol group, and (b) what the mean score would have been if all your partici-
pants had been in the experimental group. Put another way, you are asking
the question: “If all the participants had received the treatment, would they
have scored differently than if they had all been in the control group?”

Because you want to know whether the treatment made a difference, your
focus is not on the individual sample means, but on the difference between
the two means. Therefore, you would like to know how differences between
sample means (drawn from the same population) are distributed.
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How the Differences Between Means Are Distributed: The Large Sample Case.
Statisticians know how differences between sample means drawn from the
same population are distributed because they have repeated the following
steps thousands of times:

1. Take two random samples from the same population.

2. Calculate the means of the two samples (Group 1 and Group 2).

3. Subtract the Group 1 mean from the Group 2 mean to get the difference
between Group 1 and Group 2.

From this work, statisticians have established three basic facts about the
distribution of differences between sample means drawn from the same
population.

First, if you subtracted the Group 1 mean from the Group 2 mean an
infinite number of times, the average of all these differences would equal
zero. This is because, in the long run, random error averages out to zero.
Because random error averages out to zero, the mean of all the Group 1
means would be the true population mean—as would the mean of all the
Group 2 means. Because the Group 1 means and the Group 2 means both
average out to the same number, the average difference between the Group 1
and Group 2 means would be zero.

Second, the distribution of differences would be normally distributed.
This makes sense because (a) the only way random samples from the same
population can differ is because of random error, and (b) random error is
normally distributed.

Third, the standard unit of variability for the distribution of differences
between means is neither the standard deviation nor the standard error.
Instead, it is the standard error of the difference between means.

The standard error of the difference between means is larger than the
standard error of the mean. This fact shouldn’t surprise you. After all, the dif-
ference between sample means is influenced by the random error that affects
the control group mean and by the random error that affects the experimental
group mean. In other words, sample means from the same population could
differ because the first sample mean was inaccurate, because the second sam-
ple mean was inaccurate, or because both were inaccurate.

The formula for the standard error of the difference between means
reflects the fact that this standard error is the result of measuring two unsta-
ble estimates. Specifically, the formula is

2 2
o4 %
N, N,

where s; is the estimate of the population standard deviation for Group 1,
and s, is the estimate of the population standard deviation for Group 2, N4
is the number of participants in Group 1, and N, is the number of partici-
pants in Group 2.

We know that with large enough samples, the distribution of differences
between means would be normally distributed. Thus, if the standard error of
the difference was 1.0, we would know that (a) 68% of the time, the true dif-
ference would be within one point of the difference we observed; (b) 95% of
the time, the true difference would be within two points of the difference we
observed; and (c) 99% of the time, the true difference would be within three
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points of the difference we observed. In that case, if our two sample means
(the control group mean and the experimental group mean) differed by more
than three points, we would be confident that the treatment had an effect. In
other words, we would be confident that the groups were samples from popu-
lations that had different means. Therefore, we would conclude that if all the
participants had received the treatment, their mean score would be different
than if they had all been in the control condition.

If, however, we observed a difference of 1.0, we realize that such a dif-
ference might well reflect random error, rather than the groups coming
from different populations. That is, with a difference of 1.0 and a standard
error of the difference of 1.0, we could not disprove the null hypothesis. In
other words, we would not be able to conclude that the treatment had an
effect.

How Differences Are Distributed: The Small Sample Case. Although the distri-
bution of differences would be normally distributed if you used large enough
samples, your particular experiment probably will not use enough partici-
pants. Therefore, you must rely on a more conservative distribution, espe-
cially designed for small samples: the ¢ distribution.

Actually, the ¢ distribution is a family of distributions. The member of the
t distribution family that you use depends on the sample size. That is, with a
sample size of 10, you will use a different ¢ distribution than with a sample
size of 11.

The larger your sample size, the more the ¢ distribution will be shaped
like the normal distribution. The smaller your sample size, the more spread
out your ¢ distribution will be (see Figure 3). Thus, with small samples, a dif-
ference between means of more than two standard errors of the difference

700 subjects ~

70 subjects -

Likelihood

7 subjects

T T T T T T T
-3 -2 -1 0 +1 +2 +3
Difference (in standard units) between means of two random samples
from the same population

FIGURE 3 With Larger Samples, t Distributions Approximate the Normal
Curve
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might not be statistically significant (whereas such a difference would be sig-
nificant with a large sample).

Although the particular ¢ distribution you use depends on sample size,
you do not determine which particular ¢ distribution to use by counting how
many participants you have. Instead, you determine how many degrees of
freedom (df) you have.

To calculate your degrees of freedom, simply subtract 2 from the number
of participants in your experiment. For example, if you had 32 participants,
your df would be 30 (because 32 -2 = 30).

Executing the t Test

You now understand that the difference between your experimental group
mean and control group mean could be due to random error. You also realize
that to estimate the chances that a difference between means could be due to
random error, you need to do two things.

First, you need to compare the difference between the means to the stan-
dard error of the difference. In other words, you need to find out how far
apart—in terms of standard errors of the difference—the two group means are.

Second, you need to use a ¢ distribution to figure out how likely it is that
two means could differ by that many standard errors of the difference. The
particular ¢ distribution you will use depends on your degrees of freedom.

Now that you understand the basic logic behind the 7 test, you’re ready
to do one. Start by subtracting the means of your two groups. Then, divide
this difference by the standard error of the difference (see Box 3. The number
you will get is called a ¢ ratio. Thus, # = difference between means/standard
error of the difference. Less technically, the ¢ ratio is simply the difference
between your sample means divided by an index of random error.

Once you have your ¢ ratio and your degrees of freedom, refer to a ¢
table to see whether your ¢ ratio is significant. Specifically, you would look
under the row corresponding to your degrees of freedom. As we mentioned

:JI)@] Calculating the Between-Subjects t Test for Equal-Sized

Groups
Group 1 Mean — Group 2 Mean Group 2, N; = number of participants in
~ "Standard Error of the Difference Group 1, and Nz = number of participants
in Group 2.
And where the standard error of the difference
o . ; 2. —
can be calculated in either of the following 2 ways: \/ SS GroupN_ iS Group 2 X (N, + 1/N\,)
B 2, &
N, N,
Where SS = the sum of squares (see Box 1),
Where S' = standard deviation of Group 1 N; = the number of participants in Group 1,
(see Box 1), S? = standard deviation of N, = the number of participants in Group 2,

and N = the total number of participants.
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before, the degrees of freedom are two fewer than the number of participants.
Thus, if you studied 32 participants, you would look at the ¢ table in Appendix
under the row labeled 30 df.

When comparing the ¢ ratio you calculated to the value in the table, act like
your # ratio is positive. That is, even if you have a negative ¢ ratio, treat it as if it
is a positive ¢ ratio. In other words, take the absolute value of your # ratio.

If the absolute value of your ¢ ratio is not bigger than the number in the
table, then your results are not statistically significant at the p < .05 level. If,
on the other hand, the absolute value of your ¢ ratio is bigger than the number
in the table, then your results are statistically significant at the p < .05 level.

If your results are statistically significant at the p < .05 level, there’s less
than a 5% chance that the difference between your groups is solely due to
chance. Consequently, you can be reasonably sure that your treatment had
an effect. You might report your results as follows: “As predicted, the experi-
mental group’s mean recall (8.12) was significantly higher than the control
group’s (4.66), #(30) = 3.10, p < .05.”

ANOVA: ANALYZING DATA FROM A MULTIPLE-GROUP

EXPERIMENT

To analyze data from a multiple-group experiment, most researchers use anal-
ysis of variance. To use analysis of variance, your observations must be inde-
pendent, and you must be able to assume that your data are either interval or
ratio. Although ANOVA also assumes that your scores are normally distrib-
uted and that each of your groups should have approximately the same vari-
ance, you can often work around these latter two assumptions. For example,
if you have more than 30 participants in each group, you do not have to
worry about whether your scores are normally distributed.

In analysis of variance, you set up the F ratio: a ratio of the between-
groups variance (measuring differences between the different group averages,
differences that could be due to the treatment as well as to random error) to
the within-groups variance (measuring differences between each group’s aver-
age score and the individual scores making up that average, differences that
could only be due to random error). To use more precise terminology, you
set up a ratio of mean square between (MSB) to mean square within (MSW).

To calculate mean square within groups, you must first calculate the sum of
squares for each group. You must subtract each score from its group mean,
square each of those differences, and then add up all those squared differences. If
you had the following three groups, your first calculations would be as follows.

Group 1 Group 2 Group 3
S 6 14
4 S 12
3 4 10

Group Mean: 4 S 12
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Sum of squares within for Group 1:

-4’ +(@-4"+3-4" =1+ 0+ (-1)>=1+0+1=2

Sum of squares within for Group 2:

(6=5) +(5=52+(@=-5 =1 +01 + (1)’ =14+0+1=2

Sum of squares within for Group 3:

(14 -12)% + (12 =12 + (10 = 12)* = 2)* + (0)* + (=2)* =4+ 0+ 4 =8

To get the sum of squares within groups, you add (sum) all of these sums
of squares together (2 + 2 + 8 = 12).

To get the mean square within groups, you divide the sum of squares
within groups (SSW) by the within-groups’ degrees of freedom. In a multiple-
group experiment, the within-groups’ degrees of freedom equals the number
of participants—number of groups. You had 9 participants and 3 groups.
Therefore, your within-groups’ degrees of freedom is 6 (because 9—3 = 6).
In this case, because your sum of squares within is 12 and your within-
groups degrees of freedom is 6, your MSW is 2 (12/6).

To get the mean square between groups, calculate the variance of the
group means as follows:

Calculate the mean of the group means (4 + 5 + 12)/3 =21/3 = 7.

Subtract each group mean from the overall mean and square each difference:

4—7=-3;-3 squared =9
5 —7=-2;-2 squared = 4
12 — 7= 35;5 squared = 25

Add up all these squared differences (25 + 9 + 4 = 38).

Divide this term by one less than the number of groups. Since you have
three groups, divide by two.

So, your between groups variance is 19 (38/2 = 19).

To transform your variance between groups to a mean square between,
multiply it by the number of participants in each group. In this case, you
have three participants per group, so you multiply 19 x 3 and get 57.

Your F ratio is the ratio of mean square between (MSB) to mean square
within (MSW). In this case, your MSB is 57 and your MSW is 2. Therefore,
your F ratio is 57/2, or 28.5.

Thus, at this point, your ANOVA summary table would look like this:

Source of Degrees of F
variance Sum of squares freedom Mean square  ratio
Treatment ? 2 57 28.5
Error 12 6 2

To fill in the rest of the table, you need to know the sum of squares treat-
ment and the degrees of freedom for the treatment. The degrees of freedom
(df) for the treatment is one less than the number of groups. Because you
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have 3 groups, your df for the treatment is 2. To get the sum of squares for
the treatment, simply multiply the df for the treatment by the mean square
for the treatment (2 x 57 = 114).

Thus, your completed ANOVA summary table would look like this:

Source of Degrees of F
variance Sum of squares freedom Mean square ratio
Treatment 114 2 57 28.5
Error 12 6 2

To determine whether the F of 28.5 is significant at the p < .05 level, you
would look in the F table (Appendix D, Table D.3) for the critical F value for
2 degrees of freedom in the numerator and 6 degrees of freedom in the denomina-
tor. If 28.5 is larger than that value, the results would be statistically significant.

ANALYZING DATA FROM THE TWO-CONDITION WITHIN-
SUBJECTS EXPERIMENT (OR THE MATCHED-PAIRS DESIGN):
THE DEPENDENT ¢ TEST

If you are comparing two conditions (treatment and no treatment), but your
observations are not independent because you are collecting a treatment and
no-treatment score from each participant, you cannot use the independent
groups ¢ test. Similarly, you cannot use an independent ¢ test if your scores
are not independent because you used a matched-pairs design.

If you are using a two-condition within-subjects design (or a matched-
pairs design) and you have interval data, you could analyze your data with a
dependent groups (within-subjects) # test. The formula for the dependent #
boils down to dividing the average difference between the conditions by the
standard error of the difference. However, to calculate the ¢ by hand, you
need to execute the following seven steps.

STEP 1: For each matched pair (in the matched-pairs design) or for each
participant (in the two-condition, within-subjects design), subtract the
Condition 2 score from the Condition 1 score.

Pair or Condition 1 Condition 2

participant score score Difference
1 3 2 1

2 4 3 1

3 S 4 1

4 2 1 1

S 3 2 1
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Pair or Condition 1 Condition 2

participant score score Difference
7 S 2 3
8 4 3 1
9 3 4 -1

10 S 6 -1

SUM OF DIFFERENCES = 10

AVERAGE DIFFERENCE = 10/10 = 1

STEP 2: Sum up the differences between each pair of scores, then divide
by the number of pairs of scores to get the average difference.

STEP 3: Calculate the variance for the differences by subtracting each dif-
ference from the average difference. Square each of those differences, sum
them up, and divide by one less than the number of pairs of scores.

Pair or Average Observed AD-D
participant difference (AD) difference (D) AD-D squared

1 1 1 0 0

2 1 1 0 0

3 1 1 0 0

4 1 1 0 0

S 1 1 0 0

6 1 3 -2 4

7 1 3 -2 4

8 1 1 0 0

9 1 1 2 4
10 1 -1 2 4

TOTAL SUM OF SQUARES = 16

VARIANCE OF DIFFERENCES = SUM OF SQUARES/N—1 = 16/9 = 1.77
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STEP 4: Take the square root of the variance of the differences to get the
standard deviation of the differences.

Standard deviation of the differences = \/variance of the differences = \V/1.77 = 1.33

STEP 5: Get the standard error of the difference by dividing the standard
deviation of the differences by the square root of the number of pairs of
scores.

Standard deviation of the differences 1.33

Vi =10 = 2

STEP 6: Set up the ¢ ratio by dividing the average difference (AD) by the
standard error of the difference (SED).

AD 1
'=SEp = 42 2t

STEP 7: Calculate the degrees of freedom by subtracting 1 from the num-
ber of pairs of scores. In this example, because we have 10 pairs of
scores, we have 9 degrees of freedom. Then, compare your obtained
t value to the ¢ value needed to be statistically significant. That value is
listed in Table D.1 of Appendix D. In this case, the ¢ value needed to be
significant at the .05 level with 9 degrees of freedom is 2.262. Because
our value (2.380) is higher than that, our results are statistically signifi-
cant at the p < .05 level.

CORRELATIONAL ANALYSES

If you are examining the relationship between scores on two or more vari-
ables, you may decide to use a correlational analysis. The type of analysis
you use will depend on (a) whether you want to describe the data from your
sample or whether you want to make inferences about the population that
you sampled from and (b) whether your data are at least interval scale (your
scores tell you how much of a characteristic that participant has).

If you want to describe your data—and you have interval data—you
would probably compute a Pearson 7. If, on the other hand, your data are
less than interval (scores do not tell how much more of a quality one partici-
pant has than another), you may choose to describe the relationship between
your variables using a phi coefficient.

If you want to make inferences about whether the variables that are
related in your sample are really related in the population, the type of test
you should use depends on your data. If you have interval data (your scores
can tell you not only that one participant has more of a quality than another
but can also tell you how much more of the quality that participant has), you
should determine whether the Pearson r between the variables is significantly
different from zero. If, on the other hand, you have nominal data (higher
scores do not reflect more of a variable but instead reflect different kinds of
responses), you should do a chi-square test. Soon, we will show you how to
perform these tests. However, before we show you how to determine whether
the relationship you observed in your sample indicates that the variables are
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related in the population, we will start by showing you how to describe the
relationship that you observed in your sample.

Computing the Pearson r

If two variables are related, you can describe that relationship with a scatter-
plot. However, if both variables are interval-scale variables, you will probably
also want to know what the Pearson 7 correlation coefficient is between the
two variables.
The formula for the Pearson 7 is
SXY - [CX X 3Y)/N]
N X sdx X sdy

where ¥ XY = multiplying each pair of scores together and then adding up all
those products, XX = the sum of all the scores on the first variable, XY = the
sum of all the scores on the second variable (so ¥X x XY means to add up
all the scores on the first variable, add up all the scores on the second variable,
and then multiply those two sums), N = number of participants, sd x =
standard deviation of the x scores (the first set of scores), and sd y = standard
deviation of the y scores (the second set of scores).

This formula for the Pearson r makes sense once you realize three impor-
tant facts.

1. The formula must produce an index of the degree to which two variables
(which we will denote as X and Y) vary together.

2. The formula must produce positive numbers when the variables are posi-
tively correlated, negative numbers when the variables are inversely
related, and the number zero when the variables are unrelated.

3. The formula must produce numbers between —1 and +1. That is, the
formula can’t produce numbers above +1 (or below —1), no matter how
many scores there are and no matter how large those scores may be.

Because the Pearson 7 is an index of the degree to which two variables
vary together, each pair of scores is multiplied together. Specifically, the X
member of each pair is multiplied by the Y member of the pair. We then add
up all these X x Y products. Note that if X and Y are positively correlated,
we will be multiplying the biggest X values by the biggest Y values and get
some large products. If, on the other hand, X and Y are negatively correlated,
we will be multiplying the biggest X values by the smallest Y values and the
biggest Y values by the smallest X values, thus giving us relatively small pro-
ducts. Although these products will be relatively small, they won’t be negative
if X and Y are always positive (e.g., we are correlating height and salary).

So, how do we get a negative correlation coefficient (which we need
when X and Y are inversely related) if scores on X and Y are all positive?
Given we would never get a negative number if all we did was multiply X
times Y for each pair of scores and then added up those products, there must
be more to the Pearson 7 formula than just adding up all the X x Y products.

To allow ourselves to get negative numbers when the variables are nega-
tively (inversely) related, we subtract a number from the sum of the X x Y
products. That number is an estimate of what the sum of all the X x Y pro-
ducts would have been if the two sets of scores were completely unrelated.
Thus, if the variables are positively related, subtracting this estimate will still
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leave us with a positive number. If the variables are not related, subtracting
this estimate will leave us with zero. If the variables are inversely related, sub-
tracting this estimate from the actual product of X x Y will result in a nega-
tive number.

To this point, we have a formula that can produce positive and negative
numbers. The formula does not, however, meet our final criterion for the cor-
relation coefficient: Coefficients must always be between —1 and +1. The
numbers produced by our incomplete version of the correlation formula
might be far outside of the —1 to +1 range, especially if

1. we have many pairs of scores
2. the scores are extremely spread out

The more XY pairs there are, the more scores there will be to add up and
the larger the total will tend to be. Similarly, the more spread out the scores,
the more extreme the products of the scores can be. For example, if scores
range from 1 to § on both variables, the individual X x Y products cannot be
greater than 25 (because 5 x 5 = 25). However, if the scores on both variables
can range from 1 to 10, the X x Y products can be as large as 100 (10 x 10).

You have seen that our incomplete formula would produce “correlation
coefficients” that would be far outside the —1 to +1 boundaries of conven-
tional correlation coefficients. More importantly, the correlation coefficients
would be influenced by two factors that have nothing to do with the extent
to which two variables are related to each other: (a) the number of pairs and
(b) the variability (spread) of the distributions. Therefore, we need to add one
more step to our formula. Specifically, we need to take the number we have
obtained so far and divide it by an index composed of (a) the number of XY
pairs, (b) a measure of the variability of the X scores (the first set of scores),
and (c) a measure of the variability of the Y scores (the second set of scores).

By adding this final step, you now have a formula that will produce a
correlation coefficient that will range between —1 and +1, regardless of
whether you compute a correlation based on 5 pairs or 5,000 pairs and
regardless of whether participants’ raw scores range from 1.5 to 1.6 or from
200 to 200,000. Thus, as we stated before, one formula for the Pearson 7 is

SXY — [(SX X 3Y)/N]
N X sdx X sdy

where ¥ XY= multiplying each participant’s x score (the participant’s score on
the first variable) by that participant’s y score (the participant’s score on the
second variable) and then adding up all those products, (XX x 3XY) = adding
up all the x scores, getting a total, adding up all the y scores, getting a total,
and then multiplying the total of the x scores by the total of the y scores, N =
number of participants, sd x = standard deviation of the x scores (the first set
of scores), and sd y = standard deviation of the y scores (the second set of
scores).

To see this formula in action, imagine that you collected data from five
students at your school on self-esteem (X) and grade-point average (Y). Fur-
thermore, assume that self-esteem and grade-point average are interval-scale
variables. To see if the variables were related, you would use the following
steps to compute a Pearson 7.
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STEP 1: List each pair of scores in the following manner:

Score for X  Score for Y X Times Y

First pair of scores 1 1 1
Second pair of scores 2 2 4
Third pair of scores 3 2 6
Fourth pair of scores 4 4 16
Fifth pair of scores 5 3 15

STEP 2: Sum the scores in each column (to get XX, XY, XXY).

Score for X  Score for Y X times Y

First pair of scores 1 1 1
Second pair of scores 2 2 4
Third pair of scores 3 2 6
Fourth pair of scores 4 4 16
Fifth pair of scores S 3 15

X =15 Y =12 XY =42

STEP 3: Calculate the means for variables X and Y.

15/5=3
(Mean of X =X)

12/5 = 2.4
(Mean of Y =Y)

STEP 4: Calculate the sum of squares (SS) for variables X and Y.

(X —X)? (Y -Y)?

(1-3)> =4 (1-2.472 =1.96

2-32=1 (2-2.4)* =0.16

(3=32=0 (2-2.4)* =0.16

(4-3 =1 (4—2.4)% = 2.56

(5-3)> =4 (3-2.42=0.36
10 5.2

27
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STEP 5: Calculate the variance for X and Y (Variance = SS/N).
10/5 = 2.0 5.2/5 = 1.04

STEP 6: Calculate the standard deviations for X and Y (sd = square root
of the variance).

v20=141 +v1.04=1.02

STEP 7: Multiply the total of the first set of scores (£X) by the total of
the second set of scores (£Y). (We calculated these two sums in Step 2).
Then, divide by the number of pairs of scores.

(15 x 12)/5 = 180/5 = 36

STEP 8: Subtract the result that we calculated in Step 7 (36) from the
sum we calculated in Step 1 (42).

42 -36=6

STEP 9: Divide the result (6) by the number of pairs times the standard
deviation of X times the standard deviation of Y.

6/(5 x 1.41 x 1.02) = .83

Calculating the Coefficient of Determination

One problem with correlation coefficients is that they give you only a rough
idea of the strength of the relationship between two variables. For example,
if you compared a relationship described by a correlation of .1 with a rela-
tionship described by a correlation of .5, you would probably not immedi-
ately realize that the .5 relationship was 25 times stronger than the .1
relationship. Squaring the correlation coefficient gives you a better index of
the strength of the relationship: the coefficient of determination.

The coefficient of determination represents the degree to which knowing
a participant’s score on one variable helps you know (determine) the partici-
pant’s score on the other variable. The coefficient of determination can range
from 0 (knowing participants’ scores on one variable is absolutely no help in
guessing what their scores will be on the other variable) to +1.00 (knowing
participants’ scores on one variable allows you to know exactly what their
scores will be on the other variable).

If you had a correlation of +1, you would have a coefficient of determi-
nation of 1 (because +1 x +1 = 1.00). Similarly, if you had a correlation
coefficient of —1, you would have a coefficient of determination of 1 (because
—1 x —1 = 1.00). Thus, with either a +1 or —1 correlation coefficient, if you
know a participant’s score on one variable, you can predict that person’s
score on the other variable with 100% (1.00) accuracy.

The coefficient of determination tells you the amount of scatter in your
scatterplot. If the coefficient of determination is near 1, there is almost no
scatter in your scatterplot. If you draw a straight line through your scatter-
plot, most of the points would be on or near that line. If, on the other hand,
the coefficient of determination is near zero, there is a lot of scatter in your



APPENDIX e Correlational Analyses 29

scatterplot. If you draw a straight line through the scatterplot of that data,
very few of the points will be close to your straight line."

To get a better idea of what the coefficient of determination indicates,
imagine the following scenario. Participants take a test. The average score
for those participants is 30. For each participant, the researcher has recorded
the participant number (“1” for the first participant, “2” for the second, etc.)
and the participant’s score on the test. The researcher plots these data. As you
can see from Figure 4 (and the researcher confirms by computing a correla-
tion coefficient), there is no relationship between participant number and par-
ticipant test score.

The researcher then asks you to predict people’s scores on the test know-
ing only the average score (30). For every participant, you should guess “30.”
The researcher could represent your predictions as a line that went across the
graph (see Figure 5).

To see how far off your guesses were, the researcher could look at the
distance between each of the data points and your prediction line. To assign
you a score that would provide a rough index of how far off your estimates
were, the researcher could (a) for each participant, measure the difference
between the data point representing the participant’s actual score and the
point on the prediction line representing the participant’s predicted score, (b)
square each of those differences, and then (¢) add (sum) up all those squared
differences. If your guesses had been perfectly accurate, the researcher would
have obtained a score of 0 on this crude index. However, your guesses were
not perfect: You obtained a score of 1,000 on the researcher’s makeshift
index of inaccuracy.

45
40 ([ [ [ ] ([ ] ([ ]
35
30 ([ ] [ ]
25
20 [
15
10 ([ ] ([ ]
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0 2 4 6 8 10 12

Participant number

Scores

FIGURE 4 Plot Indicating No Relationship Between Participant Number and
Scores

!There are two cases in which you can have a zero correlation and yet draw a line through all
the points: (1) when the line goes straight up and (2) when the line goes straight across the
graph. However, you could draw such lines only when there was no variability in scores for one
of the variables. In our self-esteem and grade-point average example, you would have a zero cor-
relation if all your participants scored a 5 on the self-esteem measure (producing a vertical line).
You would also get a zero correlation if all your participants had a 3.0 grade-point average
(producing a horizontal line).
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FIGURE B As Shown by This Best Fitting Prediction (Regression) Line,
Predicting the Mean Is the Best Strategy When the Predictor Is Not
Correlated With the Outcome Variable

Next, the researcher asks you to predict the scores again, but this time gives
you a piece of worthless information (the participant’s number). If you had to
guess what a certain person’s score was, you would not base your guess on the
worthless information. Instead, you should again guess the mean: “30.” Because,
just as before, for every participant, you are guessing “30,” your prediction line
would be the same as before and your score on her unsophisticated index of
inaccuracy would be the same as before: 1,000.

What you are doing now is regression: you are using your knowledge of
how two variables are associated to predict one from the other. Your predic-
tion line is a regression line. Your goal in regression is for your predicted
scores to match the actual scores. In other words, your predicted scores
should match the actual scores on two key characteristics: (1) the average of
your predicted scores should be the same as the average of the actual scores,
and (2) your predicted scores should differ from each other as much as the
actual scores vary from each other (and so your predicted scores should vary
around the mean to the same extent that the actual scores vary around the
mean). In this case, you accomplished the first goal: the mean of your pre-
dicted scores is the same as the mean of the actual scores (both were 30).
However, you failed miserably at the second goal: Your predicted scores are
all the same as the mean (30) so they do not vary from each other to the
same degree that the actual scores vary from each other. Given that your
actual scores vary but your predicted scores do not, your predicted scores
cannot match the actual scores.

In technical terminology, the coefficient of determination measures the
accuracy of your predictions by looking at “the percent of variance accounted
for.” In other words, the coefficient of determination assesses the accuracy of
predictions by looking at the overlap between the predicted scores and the
actual scores. Mathematically, this overlap is expressed as a ratio of
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how much your predicted scores vary around the mean

how much the actual scores vary around the mean

In this case, your accuracy, as measured by the coefficient of determination, is

0(none of your predicted scores vary from the mean)

how much the actual scores vary around the mean

Ideally, you would like perfect accuracy: You would like your predicted
scores to perfectly match up with the actual scores in terms of both mean
and variation around the mean. If the variability of the predicted scores was
the same as the variability of the actual scores, your ratio of predicted vari-
ance to actual variance—and your coefficient of determination—would be 1.
For example, if the actual variance was 6, and the variance of your predicted
scores was also 6,

= 1

Although it may be unrealistic to expect perfect predictions that account
for all the variance in scores, you would like to make predictions that account
for some of the variance in the scores and are thus better than just guessing
the mean. To make better predictions, you need a predictor that correlates
with test scores. The more that predictor is correlated with test scores, the
more your estimates will improve. As you can see from Table 1, if the
between your predictor and the test is .1, knowing the person’s scores on the
predictor reduces the error in your guesses only slightly. Even with an r of .2,
your score on her particular index of inaccuracy would still be practically
1,000—what it was when you guessed “30” (the mean) for everybody’s
score.

Put another way, correlations between —.2 and +.2 do little to improve
the accuracy of predictions. As you can see from Table 1, an 7 of even .2 pro-
duces a coefficient of determination (%) that is very close to zero.

Determining Whether a Pearson r Is Statistically Significant

In addition to determining whether the relationship between your variables in
the sample data is substantially above zero, you may want to determine
whether the relationship between the variables is different from zero in the
population. To illustrate why you might want to determine whether the Pear-
son r in the sample data indicates that the two variables are related in the
population, suppose you collected self-esteem and grade-point average data
from a random sample of 5 students at your school and found that r =
+.58. In that case, you could use your sample data to determine whether
there is a relationship between self-esteem and grade-point average for the
entire school.

STEP 1: Compute a ¢ value, using the formula

,_ rXVWN-2)
V1-(xr

where 7 = the Pearson r and N = number of participants.
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7ABLE 1
Pearson r, the Coefficient of Determination, and Errors in Prediction
7 7 (also called 0% Index of inaccuracy®
0 .00 1000
1 .01 990
2 .04 960
3 .09 910
4 .16 840
5 25 750
.6 .36 640
7 49 510
.8 .64 360
9 .81 190
1.0 1.00 0

*Note two indications that accuracy of prediction increases as 7 increases:

(a)

7> increases and (b) an index of inaccuracy decreases.

"The numbers in this column are the total of the squared errors in prediction you
would make if you (a) based all your predictions of participants’ scores entirely on a
best-fitting prediction line that used one predictor, (b) that one predictor correlated
with participants’ scores to the degree stated in the leftmost (“#”) column, and (c) you
were predicting all the participants’ scores for the one particular sample we used for
this example. Lower scores indicate more accuracy (less inaccuracy), whereas higher
scores indicate less accuracy (more inaccuracy). Thus, 0 on the index reflects perfect
accuracy (no errors in prediction).

Note that, all other things being equal, the bigger N is, the bigger ¢ will
be. Also, note that the bigger r is, the bigger ¢ will tend to be. Not only
does a larger r increase the size of the numerator, but it shrinks the size
of the denominator. In other words, the larger the relationship and the
more participants you have, the greater the chance of finding a statisti-
cally significant result.

o 58x VG —2)
V1 - (58 % .58)
_ 58X 173
V1- 34
_ 100 _
= =123

STEP 2: After computing the t value, look the value up in the ¢ table
(Table D.1 in Appendix D) under 3 degrees of freedom (N—2) for the
.05 level of significance. That value is 3.182. Because 1.23 does not
reach that value, you would conclude that the correlation coefficient was
not significantly greater than zero. Note that your results are
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inconclusive: If you had used a larger sample, you might have found a
statistically significant relationship.

Computing a 2 x 2 Chi-Square and the Phi Coefficient

Calculating the Pearson 7 is a good way to describe the relationship between
two interval-scale variables in your sample. Testing whether a Pearson 7 is
statistically significant is a good way to determine whether there is a relation-
ship between two interval-scale variables in the population.

But what if, instead of having interval scale data, you only have nominal
data? In that case, rather than calculating a Pearson 7, you should compute a
phi coefficient—and instead of testing whether the Pearson r is statistically
significant, you should do a chi-square test.

To see how to do such tests, imagine that you asked men and women
whether they believed gay men deserved the same employment opportunities
as heterosexual men. If you wanted to know whether there was a gender dif-
ference in their responses, you could find out by calculating a chi-square
using the following steps.

STEP 1: Set up a table like the following one.

Women Men Total
Yes A B
No @ D

(N) = Total Number of Participants

STEP 2: Replace the letter A with the number of women who said

<« b2}

yes.
Replace the letter B with the number of men who said “yes.”
Replace the letter C with the number of women who said “no.”

Replace the letter D with the number of men who said “no.”

Replace N with the total number of participants.

By the end of this process, your table might look like the following

one.
Women Men Total
Yes 20 (A) 15 (B) 35
No 55 (C) 10 (D) 65

Totals 75 25 (N) 100
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STEP 3: Multiply the number in the (B) square by the number in the (C)
square. Then, multiply the number in the (A) square by the number in the
(D) square. For our data, that would be

Bx C=15x55=825
AxD=20x10=200

STEP 4: Plug in the appropriate numbers in the following formula:

, N(B X C— AX D)?
X=U+BX({C+D) XA+ C X (B+D)

100 (825 — 200)?
T 35X 65 X 75 X 25

100 X 390,625 39,062,500
T 4265625 4,265,625

STEP 5: Turn to the Chi-Square Table (Table D.2 in Appendix D), and
find the row corresponding to 1 degree of freedom. (For a 2 x 2 chi-
square, your degrees of freedom will always be 1 because df equals the
number of rows minus 1 times the number of columns minus 1. Because
a 2 x 2 chi-square has 2 rows and 2 columns, its df = (2—1) x (2—1) =
1x1=1.)

STEP 6: Determine whether your chi-square is one-tailed or two-tailed. If
you predicted only that the groups would differ, then you have a two-
tailed test. For example, if you predicted only that there would be a dif-
ference between the genders in views toward gay men’s employment
rights, you have a two-tailed test. If, on the other hand, you predicted
which group would score higher than the other, then you have a one-
tailed test. Thus, if you predicted that men were less likely to think that
gay men should have equal employment opportunities, then you have a
one-tailed test.

STEP 7: If you have a two-tailed test with a value of 3.84 or more, your
test is significant at the .05 level. Our value of 7.937 exceeds that value,
so our test would be significant at the .05 level.

To compute the phi coefficient, use the following formula:

BXC—AXD
VUA+B X(C+D)X A+ C) X ([B+D)

In this case,

825 — 200 _
V4,265,625

Introduction to Multiple Regression

Thus far, we have used correlational analyses to look at the relationship
between two variables. However, some correlational analyses, such as multi-
ple regression, can be used to look at the relationships among several vari-
ables. With most standard regression analyses, you end up with an equation
that uses one or more predictors to predict scores on a question or measure.
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For example, suppose that you conducted a survey composed exclusively of
5-point questions and you want to find a set of predictors that will help you
predict the answer to question 6. If only one of the predictors is useful, your
regression equation might be the answer to question 5 = the predicted score
on question 6. By substituting the possible values of question 5 into the equa-
tion, we could make use of that equation to construct the following table:

Participant’s pre- Participant’s ac-

Participant’s score  dicted score on tual score on  Difference
on question 5 question 6 (Y) question 6 (Y)  (residuals)
1 1 1 0
2 2 2 0
3 3 3 0
4 4 4 0
5 5 5 0

If we wanted to compare predicted scores (column 3 of our table) to the
actual scores (column 4 of our table), we could subtract those two sets of
scores. The differences between the predicted and actual scores are called
residuals.

We could also compare the predicted scores to the actual scores with a
graph. If we plotted a line based on the scores predicted by the equation (the
numbers in the third column of our table), and then plotted the actual scores
(the numbers in the fourth column of our table), we would construct the fol-
lowing graph:

6_
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If two of your predictors were useful, your equation might be 2/3 x the
answer to question 5 + 1/3 x the predicted answer to question 10 = the pre-
dicted score on question 6. By substituting the possible values for questions 5
and 10 into the equation, we could use that equation to create the following
table:



36  APPENDIX e Online Introduction to Statistics

Participant’s pre-  Participant’s ac-

Participant’s score Participant’s score  dicted score on tual score on
on question 5 on question 10 question 6 question 6
1 1 1.00 1.00
1 2 1.33 1.33
1 3 1.67 1.67
1 4 2.00 2.00
1 5 2.33 2.33
2 1 1.67 1.67
2 2 2.00 2.00
2 3 2.33 2.33
2 4 2.67 2.67
2 S 3.00 3.00
3 1 2.33 2.33
3 2 2.67 2.67
3 3 3.00 3.00
3 4 3.33 3.33
3 S 3.67 3.67
4 1 3.00 3.00
4 2 3.33 3.33
4 3 3.67 3.67
4 4 4.00 4.00
4 S 4.33 4.33
S 1 3.67 3.67
5 2 4.00 4.00
5 3 4.33 4.33
S 4 4.67 4.67

S ) 5.00 5.00
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Alternatively, we could use the equation and the actual scores (the last
two columns of the table) to construct the following graph:

Question 6 scores
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The line that we have drawn through the points is called a regression
line. If you have the computer draw a regression line for your data, the line
should appear to fit those data: The line’s predicted scores should be close to
the actual scores. If you could perfectly predict scores, every data point would
be on your regression line (as in the two previous examples). If your equation
was fairly accurate, then most of the points would be close to your regression
line. If your equation was not very accurate, then the line would not fit the
points.

You will not need to eyeball your data to determine how accurate your
regression equation is. Almost all computerized statistics programs will pro-
vide an indicator of how accurate your equation is. This estimate of how
well your predictors, as a group, predict your outcome measure is called
“multiple R-squared.” Multiple R-squared can range from 0 (using the
regression equation to predict each participant’s score would be no more
accurate than predicting that each participant’s score was the mean score) to
1 (your prediction equation can predict scores in your sample with 100%
accuracy). (Note that most statistics programs will refer to multiple R-
squared as either “R*” or “R square.”)

Most statistics programs will also provide you with an indication of
which predictors are least important for predicting your outcome variable
and which are most important. The least important predictors will tend to be
left out of the final regression equation. The most important ones tend to be
those that, when added to the equation, increase R-squared the most.>

How to Avoid Being Tricked by Multiple Regression

As we have said, computer programs can provide you with important infor-
mation. However, that information may be misleading, especially if the

2Another way to determine the relative contributions of your predictors is to look at their beta
weights in the final, standardized regression formula. The larger the beta weight is (often referred
to as standardized coefficients and often abbreviated as /3), the bigger the predictor’s
contribution.
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analysis is a stepwise regression and the ratio of predictors to participants
was less than 15 to 1 (e.g., there were 30 participants and 3 predictors).

The equation that the computer generates may be greatly affected by an
extreme score from a single research participant. Consequently, the regression
equation that you get in one sample may be very different from the one that
you would get if you were to repeat your study. To determine whether a few
extreme scores are dramatically affecting the equation, you should scan the
data for extreme scores and re-run your analysis without those extreme
scores.” If you obtain essentially the same results on this second analysis, you
can be relatively confident that your results are not being thrown off by an
extreme score.

The multiple r-squared can be deceiving because it will tend to give you
an inflated impression of how well the predictors correlate with the outcome
variable. Keep in mind that the equation did not really predict your outcome
variable. Instead, after looking at your outcome variable, an equation was
generated to fit the data from your particular sample. Thus, just as you
would not be surprised if someone was able to draw a line to fit your plotted
data, you should not be surprised if a computer could fit a line to your exist-
ing data. Given a large number of predictor variables and a small number of
scores, a formula can be made to fit almost any set of scores.

Regression is like “the Texan who shoots holes in the side of the barn
and then draws a bull’s-eye around the bullet holes” (Carroll, 2003, p. 375).
Consequently, you may find that a multiple r-squared that seems large (e.g.,
.50) is not statistically different from chance. Therefore, before deciding
whether a regression equation can predict scores on your outcome variable,
you should determine whether the multiple 7-squared is statistically signifi-
cant. To do this, look for an F test (ANOVA) testing either “Model,”
“Regression,” or “R*.” To be statistically significant, the p value of the test
(often abbreviated as either “Sig.” or “Prob > F”) should be less than .05.

A significant multiple r-squared tells you that your equation does more
than just capitalize on chance: It produces an equation that fits the data better
than an equation that used variables that were uncorrelated with your out-
come variable. In other words, if you were to use the same equation on a
new sample of data, your multiple #* would be greater than 0. However, you
probably want to know more than that your equation’s r-squared, after
adjusting for chance, is greater than zero. You want to know how much
greater than zero. To find out, look at the adjusted r-squared. The adjusted r
-squared subtracts a value from the multiple 7-squared to take into account
that even an equation full of variables that were uncorrelated with the out-
come variable could be made to produce values that would correlate with
the outcome variable. In short, if you look at the multiple 7-squared instead
of the adjusted 7-squared, you can be fooled about how good you are at pre-
dicting participants’ scores.

3You may be able to spot an extreme score in a graph of your data by just looking for scores
that seem to be almost off the graph. Another tactic is to look for scores that are more than 3
standard deviations from the mean. If your computer program lists the » values or D values of
data points, consider extreme scores to be those with » values above .5 or D values greater than

1.
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Not only can you be fooled about how good your equation is at predict-
ing scores, but you may also be fooled about the relative importance of an
individual predictor variable. The amount that a predictor increases 7-
squared often depends on (a) when it was entered into the equation and (b)
whether related variables were already entered into the equation.

To illustrate that it matters when the predictor is added, suppose we were
doing a survey and trying to predict responses to item 11 (whether people
strongly disagree, disagree, neither agree nor disagree, agree, or strongly
agree with the statement “I like college students”). Suppose agreement with
item 6 (“College is stressful for students”) significantly correlates with
answers to “I like college students.” In that case, if item 6 was the first vari-
able we entered into the equation, item 6 would be certain to be a statistically
significant predictor for two reasons. First, it doesn’t have to do much: It only
has to make r-squared significantly greater than zero. Second, it doesn’t have
to share credit with any other variables: Any increase in r-squared is attrib-
uted to item 6.

If, on the other hand, we added item 6 to the equation only after entering
all the other items as predictors, adding item 6 might not significantly
improve our equation’s ability to predict item 11 responses because (a) we
already have a large 7-squared so improving it significantly would be difficult
and (b) some of the variability that item 6 could account for has already been
eaten up by related, competing variables (especially if we had the following
items: “Colleges need to spend more time on students’ emotional develop-
ment” and “College students work hard on their studies” that, like item 6,
tap into concerns about college being stressful). Thus, if we looked at the
“Model Summary” section of an SPSS printout, we might find that the “R-
Square Change” for our model with question 6 added was not significantly
different from our model without question 6 (e.g., “Sig. F Change” was
greater than .05). Similarly, if we looked under the “Coefficients” table in
the printout, we might find that the variable we labeled “Question 6” was
not significant (e.g., the “#” associated with question 6 was less than 2 and
the “Sig.” in the Question 6 column was greater than .05).

To help you understand and remember how a regression equation may
mislead you about the relative importance of a predictor, realize that the
regression equation is sensitive to the unique contribution of each predictor.
In a way, the same things that would allow you to make a large and unique
contribution to an electronic discussion list are the same things that allow a
predictor to make a large and unique contribution to the equation. It is easier
to make a large and unique contribution if you are one of the first to enter
the discussion, just as it is easier for a predictor to have a large and signifi-
cant effect if it is the first entered into the equation. It is also easier to make
a large and unique contribution if your viewpoint is different from that of
the people who have already entered the discussion. Thus, a comment that
you make in one list might be unique and contribute much, whereas the
same comment might seem redundant in another list. Similarly, whether a
predictor appears to be relevant may depend on the other variables in the
equation. In more technical terminology, intercorrelations among predictors
(sometimes called collinearity or multicollinearity) can cause the regression
equation to underestimate the strength of a particular predictor variable.

Therefore, before deciding that a variable is unimportant for predicting
your outcome variable, there are two things you should do. First, look at the
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Pearson 7 between the potential predictor and (a) the outcome variable and
(b) the predictors that did make it into the regression equation. You may
find that the potential predictor correlates well with the outcome variable
but was left out of the equation because it correlates highly with a predictor
that is already in the equation. In such a case, you might see what happens
when you enter your potential predictor variable into the regression equation
while leaving out predictors that correlate highly with that variable. Second,
see whether your computer program provides the variance-inflation factor
(VIF) statistic. If the VIF is greater than 5, do not trust the equation’s esti-
mates about the relative importance of your predictors.

Using Regression to Test for Moderator Variables

Although the results from multiple regression can be misleading, multiple
regression is a flexible technique that has many uses. It can even help you
find a moderator variable: a variable that alters the relationship between two
other variables; a predictor that, when occurring in combination with another
predictor, is related to the outcome measure in a way that could not be pre-
dicted from knowing only the individual predictors’ relationships with the
outcome measure.

To see how multiple regression can help you find a moderator variable,
consider the following example. First, suppose that (a) newly married couples
who had positive expectations tended to be happier with the marriage than
those who entered with negative expectations, and (b) couples who tended to
be skilled at interacting with each other in a positive constructive manner
were happier with the marriage than those who were not skilled. From these
findings, we might create a crude regression-type equation in which we would
say that a (expectations) + b (skills) = ¢ (predicted marital happiness). To
plug numbers into our equation, we could give couples a +1 for positive
expectations but a —1 for negative expectations and a +1 for good skills but
a —1 for poor skills. Thus, a couple with positive expectations (+1) and good
skills (+1) would have a predicted score a +2 (1 + 1 = 2), whereas a couple
with low expectations (—1) and poor skills (—1) would have a predictor score
of =2 (=1 + —1 = —2). In this model, our prediction is just a function of
adding the values of our individual variables. Thus, a couple with good skills
(+1) and low (—1) expectations would get a 0. Let’s say that this additive
model predicted actual marital happiness with some degree of accuracy.

To see whether we had a moderator variable, we would need to see
whether certain combinations of expectations and skills (e.g., positive expec-
tations combined with positive skills) had effects that were beyond what we
would get from just adding the values of the individual variables together.
For example, suppose couples with positive expectations (+1) and positive
skills (+1) did not score a 2 but instead scored a 3 on our marital happiness
scale. Or, suppose that couples with negative expectations (—1) and negative skills
(—1) did not score a —2 but instead scored a 0 on our marital happiness scale. In
both cases, adding the individual, average values of the predictors does not
give us the right predicted value. Put another way, both cases suggest that
skills 7oderate expectations.

How could we get multiple regression to tell us that the combination of
our predictors has a relationship with marital happiness that is more than—
and different from—the sum of the predictors’ individual relationships with
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marital happiness? The basic strategy would be to see whether adding a vari-
able that represents the combination of the two variables can improve the
equation. In this case, the goal would be to better predict marital satisfaction
by changing the formula “expectation + skills = satisfaction” to “expectation
+ skills + combination of expectations and skills = satisfaction.”

To get the term expressing the combination (interaction) of the two vari-
ables, we could multiply the scores of the individual variables together. Multi-
plying those values gives us a positive number when there is a match between
expectations and skills (the combination of positive expectations with positive
skills produces +1, as does the combination of negative expectations with
negative skills) and a negative number when there is a mismatch between
expectations and skills (positive expectations combined with negative skills
produces a —1, as does negative expectations combined with positive skills).
Thus, our new formula is not

a (expectations) + b (skills) = ¢, but rather
a (expectations) + b (skills) + a x b (combination of expectations and skills) = c.

As you can see from Table 2, the two equations make different predic-
tions. If the formula including a term expressing the combination (interaction)
of the two variables does a significantly better job of predicting actual marital
happiness, you have solid evidence that skill is a moderator variable. As it
turns out, McNulty and Karney (2004) found that an equation including the
interaction (combination) term does do a better job of predicting actual mari-
tal happiness. Thus, skill does moderate the effect of expectations: Couples
with positive skills are better off having high expectations, but couples with
poor skills are better off having low expectations.

TABLE 2
Two Regression Equations Predicting Marital Satisfaction on a -3 to
+3 Scale

Formula 1 Formula 2

Couple’s prediction prediction (A
characteristics A B A xB (A + B) +B+ A xB)
Positive 1 1 +1 2 3
expectations

Positive skills

Positive 1 -1 -1 0 -1
expectations

Negative skills

Negative -1 1 -1 0 -1
expectations

Positive skills

Negative -1 -1 +1 -2 -1
expectations

Negative skills
Note: Column A refers to expectations (positive = +1, negative = -1) and Column B refers to

skills (positive = +1, negative = -1).
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To help yourself understand how skill—or any other moderator variable—
modifies the relationship between two other variables, you could go back and
compute two correlation coefficients between those two other variables: (1) a
correlation between the two other variables for those cases that are above the
mean on the moderator variable and (2) a correlation between the two other
variables for those cases that are below the mean on the moderator variable. For
example, you might find that the correlation between expectations and marital
happiness is +.30 for couples who have above average skills, but that the
correlation between expectations and marital happiness is —.20 for couples who
have below average skills.*

Using Multiple Regression to Look for Mediator Variables: Answering
“How" Questions

Suppose that, instead of showing that you have found a moderator variable,
you want to show that you have found a mediating variable: a mental or
physiological mechanism that causes the relationship between two other vari-
ables. That is, you may want to show that your predictor variable (Variable
1) does not have a direct effect on your outcome variable (Variable 3), but
instead affects a mediating variable (Variable 2) and that mediating variable,
in turn, affects your outcome variable (Variable 3). How can you make the
case for this chain of events?

To make the case that, like a chain reaction involving three dominoes, the
first affects the second, which in turn, affects the third, you can use multiple
regression. For example, take Sargent’s (2004) finding that people who most
believe in punishing criminals tend to score low on the need for cognition
scale: a measure of how much people enjoy thinking. You might suspect that
the reason for this relationship is that people who (1) don’t like to think (2)
may not think of the cultural, environmental, and situational reasons for a
person’s behavior and therefore would have a (3) greater desire to punish the
person for the person’s behavior.

To see whether thinking about situational causes for behavior mediates
the relationship between need for cognition and punishment, you would mea-
sure all three variables. Then, you would go through Baron and Kenney’s
(1986) four steps (see Figure 6):

1. You would establish that need for cognition was related to punishment
by finding a significant correlation between those two variables. (If you
were going to argue that knocking over the first domino causes the sec-
ond domino to fall, which, in turn causes the third domino to fall, you
would have to show that knocking over the first domino correlates with
the third domino falling. Likewise, if you want to argue that your predic-
tor influences the outcome variable, your predictor better correlate with
the outcome variable.)

2. You would establish that need for cognition was related to your measure
of thinking about situational, rather than personal, causes for behavior

*If you want to see whether the correlation coefficients are significantly different, go to this
book’s website to do the appropriate statistical test.
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by finding a significant correlation between the two variables. (If you
were going to argue that knocking over the first domino causes the sec-
ond domino to fall, which, in turn causes the third domino to fall, you
would have to show that knocking over the first domino correlates with
the second domino falling. Likewise, if you want to argue that your pre-
dictor influences the outcome variable by influencing the mediator vari-
able, your predictor better correlate with the mediating variable.)

3. You would show that your mediating variable has an effect beyond that
of your predictor by showing that when you add your mediating variable
(thinking about situational causes) to a regression equation that has
already used your predictor (need for cognition), your mediating variable
improves the equation’s ability to predict the amount of punishment a
person gives. (If you were going to argue that knocking over the first
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domino causes the second domino to fall, which, in turn, causes the third
domino to fall, you would have to show that, regardless of what happens
to the first domino, knocking over the second domino causes the third
domino to fall. Similarly, if your mediating variable causes changes in the
outcome variable, it should be able to do so independently of your pre-
dictor variable.)

4. You could argue that your predictor’s effect is entirely through your
mediating variable by showing that when you add your predictor (need
for cognition) to an equation that has already used your mediator (think-
ing about situational causes), the predictor does not improve the equa-
tion’s ability to predict the amount of punishment a person gives. (If you
were going to argue that knocking over the first domino causes the sec-
ond domino to fall, which, in turn causes the third domino to fall, you
would have to show that, when you have already knocked down the sec-
ond domino, there is no relationship between knocking down the first
domino and the third domino falling. Similarly, if your predictor’s effect
is entirely through the mediating variable, the predictor variable will not
have an effect that is independent of your mediating variable.)

Making the Case for Cause— Effect Relationships: Attempts to Answer
“Why” Questions With Correlational Data

When we were discussing mediators, we were asking how a predictor variable
had an effect. Before finding a mediator, we usually need to first establish
that the predictor variable had an effect.
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How do we know that the predictor had an effect? Sometimes, we know
because an experiment allowed us to establish it. But if we had only correla-
tional data, how can researchers argue that the predictor had an effect on
the outcome variable? After all, correlational techniques cannot establish cau-
se—effect relationships because (1) with correlation, you do not know which
variable came first so you can mistake causes for effects and (2) because
both your variables may be effects of some other (third) variable, this third
variable may be responsible for the relationship between your two variables.
However, some researchers try to overcome these two problems with correla-
tional data.

Researchers are sometimes able to establish which of their variables came
first by using longitudinal and prospective methods—methods in which they
measure a variable one time and then measure a second variable later. For
example, if you collected individuals’ scores on a mental health measure
when they were 7 and then, 20 years later, you collected their college grade-
point average, you know their college grade-point average could not have
caused them to score poorly on a mental health measure when they were 7.

In terms of ruling out third variables, researchers may be able to rule out
some third variables by statistically controlling fer-them. Usually, researchers
would measure the suspected third variable and then try to rule out its effects
using either a simple technique such as a partial correlation or ANCOVA or
using a sophisticated technique such as structural equation modeling.

A partial correlation between two variables attempts to calculate the
association between two variables when the effects of a third variable are
accounted for. Thus, if the relationship between two variables (e.g., mother’s
skill at reading her child’s mind and child’s self-esteem) was due to a third
variable (divorce leading to mothers being worse at reading their child’s
mind and divorce hurting a child’s self-esteem), the partial correlation
between mother’s mind reading and child’s self-esteem (controlling for
divorce) would be zero.

In analysis of covariance (ANCOVA), a researcher might create two
groups (children whose mothers were accurate mind readers and children
whose mothers were poor mind readers) and use moms’ self-esteem as a vari-
able (a covariate) in the analysis. If, even after statistically controlling for
moms’ self-esteem, children of accurate mind readers had higher self-esteem
than the children of poor mind readers, you could be confident that mom’s
self-esteem wasn’t the third variable causing both poor mind reading and
poor self-esteem. The problem is that you don’t know whether there is some
other third variable causing both poor mind reading and poor self-esteem.

Structural equation modeling (SEM) is better than ANCOVA or partial
correlations at ruling out the effects of third variables. However, like
ANCOVA and partial correlations, SEM can account for only third variables
that the researcher knew about and measured. Furthermore, SEM, like
ANCOVA and partial correlations, can confuse cause and effect. For exam-
ple, if the child’s high self-esteem causes the mother’s accurate mind reading,
all three methods might incorrectly conclude that the mother’s accurate mind
reading causes the child’s high self-esteem.

In short, researchers cannot use correlational methods to make cau-
se—effect statements. However, they can often make a better case that one
variable has an effect on another by using logic and sophisticated statistical
techniques than by using only correlation coefficients.
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Introduction to Factor Analysis

We have shown you how researchers can use correlational analyses (a) to
describe the relationship between two variables (with the Pearson 7, the coef-
ficient of determination, and the phi coefficient), (b) to determine whether
two variables that were related in a sample are also related in the population
(testing to see whether the Pearson r is statistically different from 0 or using
the chi-square test), (c) to determine which combination of predictors allows
you to best estimate scores on a measure, (d) to identify moderator variables,
(e) to identify mediating variables, and (f) to make a case that one variable
causes changes in another. However, we have not shown you a very common
use of correlational analyses: to help assess the validity of a measure.

To see how this works, suppose you want to measure love, and you think
that love has two different dimensions (sexual attraction and willingness to
sacrifice for the other). Furthermore, you believe that these dimensions are
relatively independent. For example, you believe that a person could be high
on sexual attraction, but low on willingness to sacrifice—and vice versa.

One approach would be to make up a love scale that had two different
subscales. If the subscales are really measuring two different things, then the
following should apply:

1. A participant’s answers to each question in the first subscale should
correlate (correspond, agree) with each other.

2. A participant’s answers to each question in the second subscale should
correlate with each other.

3. A participant’s score on the first subscale should not correlate highly with
that participant’s scores on the second subscale.

In our case, all the responses to items related to sexual attraction should
correlate with one another, and all the responses to items related to sacrifice
should correlate with one another. However, the sexual attraction items
should not correlate highly with the sacrifice items.

A more sophisticated and extremely common approach to determining
whether the items on a test correlate with each other is to do a factor analysis
(Reis & Stiller, 1992). We can define factor analysis as a statistical technique
designed to divide the many questions on a test into as few coherent groups
as possible. Put another way, rather than explaining how participants answer
the test by talking about how participants answer each individual question,
factor analysis tries to explain participants’ patterns of answers in terms of a
smaller number of underlying hypothetical factors.

The logic behind factor analysis is straightforward: We assume that when
participants’ answers to one group of questions correlate with each other,
then those questions all measure the same factor. For example, imagine that
we have a 10-item test. In that test, participants answered the first six ques-
tions similarly: If we know how they answered any one of those questions,
we can make a reasonable prediction about how they answered the other
five. Similarly, their responses to the last four items were highly correlated.
However, their responses to the first six questions did not correlate very well
with their answers to the last four questions. In such a case, factor analysis
would say that because the test seems to be composed of two groups of
items, the test measures two factors. In technical terminology, the first six
items of the test would load on one factor, the last four items would load on



APPENDIX e Correlational Analyses 47

another factor. Each question’s factor loading tells us the degree to which it
appears to be measuring a given factor.

Factor loadings, like correlation coefficients, can range from —1 to +1.
Ideally, questions designed to measure a certain factor would have a factor
loading of 1.0. However, because of unreliability and other measurement
error, a question’s factor loadings will usually be well below 1.0. Indeed, a
factor loading of 4.7 is considered very high and some researchers are happy
when a question has a factor loading above +.3.

You have seen that factor analysis tries to find out how many factors are
being measured by a test and how well individual questions measure those
factors. But what results would you want to obtain from a factor analysis of
your love scale? In this case, you would hope for two outcomes.

First, you would hope that the factor analysis supported the view that
there were two different factors being measured by the test. You would be
disappointed if the factor analysis reported that, based on participants’
responses, your test seemed to be composed of three types of items. If the fac-
tor analysis supports the view that there are two factors, you might be able to
report something like, “The two-factor solution accounts for a large amount
(at least 60%) of the variability in participants’ responses.”

Second, you would hope that the factor analysis found that the items that
you thought made up the sexual attraction subscale all corresponded to one
factor and the items that made up the sacrifice subscale all corresponded to
another factor. In technical terminology, you would hope that all the sexual
attraction items loaded on one factor, and all the sacrifice items loaded on a
different factor. Specifically, because factor loadings are like a correlation
between the test question and the factor, you would want all your sexual
attraction items to have high loadings (above .5) on the factor you want to
label sexual attraction and near zero loadings on the factor that you want to
label sacrifice. Conversely, you would want all your sacrifice items to have
very low factor loadings on the factor that you want to label sexual attraction
and loadings on the factor you want to label sacrifice.



